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ABSTRACT 

Recent studies using general regression neural networks 

have shown that by mapping the collocated brightness 

temperatures from the CALIPSO Imaging Infrared 

Radiometer (IIR) [1] and the sea surface temperatures 

form Aqua’s Advanced Microwave Scanning 

Radiometer (AMSR-E) [2] to the optical depths derived 

from the CALIPSO lidar [3], and then applying the 

trained network to the combination of passive sensor 

parameters alone, we can successfully retrieve the 

optical depths of previously undetected thin cirrus 

cloud embedded in the passive sensor measurements.  

In this paper, we describe our approach for using a 

supervised neural network to derive correlations 

between coincident active and passive measurements 

from the A-Train instruments.  After briefly recounting 

the motivation for attempting the retrieval, we describe 

our methodology for training the network using the 

CALIPSO lidar optical depths. We subsequently 

validate this methodology using two test scenarios, and 

discuss future applications designed to increase the 

information derived from passive measurements.  Our 

preliminary validation studies show that when applying 

this method we can expect reliable retrievals of optical 

depths as small as ~0.1, with a success rate of ~95%. 

1.     INTRODUCTION 

Accurate knowledge of the temporal frequency and 

spatial extent of optically thin cirrus is crucial to 

climate feedback analysis. Current global warming 

theory asserts that when the atmospheric concentration 

of CO2 increases, the outgoing longwave radiation at 

non-window wavelengths (outside of the 8-12micron 

range) is reduced. If the Earth's net radiative balance is 

to remain stable, ground temperatures must rise in 

response, thereby increasing thermal emission to space. 

Current Global Climate Models (GCM) differ 

significantly in terms of cloud feedback [4]. One 

possible response of the cloud-climate feedback process 

is an increase in the global occurrence of thin cirrus 

clouds, driven by the increase in longwave cooling in 

the stratosphere. Exacerbating the difficulty of 

assessing the situation has been the fact that passive 

remote sensing instruments cannot reliably detect cirrus 

clouds with optical depths less than ~0.3, because these 

clouds do not reflect enough sunlight to create a 

sufficient contrast with the Earth's surface. Now, 

however, the presence of thin cirrus can for the first 

time be accurately detected and systematically 

monitored by the combination of active and passive 

sensors onboard the CALIPSO satellite. Nevertheless, 

the data record is still quite limited, as CALIPSO has 

been in orbit for only 20 months. We have, therefore, 

initiated a multi-platform data fusion study to establish 

a methodology for extending the limited set of 

CALIPSO measurements to the existing 30-year record 

of passive remote sensing data, and thus improve our 

understanding of cloud feedback mechanisms.   

Our initial study was limited to nighttime data from the 

first 10 days in April 2007.  We applied a general 

regression neural network (GRNN) to collocated 

samples of sea surface temperature (SST) reported by 

AMSR-E, brightness temperatures (BT) from the 

CALIPSO IIR, and optical depths (OD) derived from 

the CALIPSO lidar measurements. The results revealed 

an accurate mapping of the optical depths derived from 

the active sensors to the brightness temperatures 

computed from the passive sensor measurements. In 

testing the trained network using the combination of 

passive sensor parameters, we found that optical depths 

as small as 0.1 could be reliably retrieved.   Similar 

results are obtained in the larger follow-on study 

reported here, in which we apply the same methodology 

to all of the nighttime data acquired during December 

2007. 

2.   DATA SELECTION AND PREPARATION 

Instruments aboard the A-train constellation of Earth 

observing satellites provided the measurements used in 

this study. Observations from the CALIOP lidar aboard 

CALIPSO were combined with passive imagery from 

the CALIPSO IIR and AMSR-E. The IIR is a nadir-

viewing, non-scanning imager having a 64 km by 64 

km swath with a pixel size of 1 km. The CALIOP beam 

is nominally aligned with the center pixel of the IIR 

image.  Over ocean, AMSR-E provides sea surface 

temperatures from beneath most types of cloud cover, 

supplementing infrared-based measurements of SST 

that are restricted to cloud-free areas.  The processed 

SST data is mapped to 0.25-degree grid. 

Optical depths at a 5km horizontal resolution were 

retrieved from the CALIPSO Level II data products.  

Because solar background significantly reduces the 



 

signal-to-noise ratios of daytime CALIOP 

measurements, we have restricted our initial investiga-

tions to nighttime data only. The IIR 8.55, 10.6, and 

12.05 micron radiances were converted to brightness 

temperature then averaged along-track to a 5km 

resolution around the center pixel that was coincidental 

with the lidar footprint. The collocated SST 

measurements were converted to degrees Kelvin. 

Three hundred and ninety six nighttime orbit segments 

from December 2007 were searched for CALIPSO 

measurements that met the following criteria: single-

layer transparent (i.e., not opaque) clouds with tops 

above 6-km, situated over ocean between 30° N and 

30° S, having valid, collocated measurements of both 

SST from AMSR-E and BT from the IIR.  This 

produced 16,517 records. These records were 

configured to created a collection of data vectors that 

best represented the optical properties of the cloud 

structures identified during the selection process. The 

IIR’s choice of spectral bands was specifically 

designed for the study of cirrus clouds, which  allows 

utilization of the classic split window technique along 

with the 10.6-micron channel.  Finally, by subtracting 

the emission from the sea surface from the 10.6-micron 

brightness temperature, we get the true brightness 

temperature of the remaining cloud or body.  The 

parameters are shown in Table 1.  Available data is split 

into two sets, a training set and a test set. 

Table 1: GRNN Data Vector Parameters 

Input Parameters: 

1. SST – BT 10.6 micron 

2. BT10.6 micron - BT 12.05 micron 

3. BT 10.6 micron – BT 8.65 micron 

4. BT 10.6 micron 

 
Training Parameters 

1. Cloud Optical Depth – Calipso 

 2. Cloud Optical Depth – Passive 

Sensors   
Output Parameters 

1. Cloud Optical Depth  

 

2. GENERAL REGRESSION NEURAL 

NETWORK 

GRNNs belong to a class of supervised neural networks 

that perform regression where the target variable is 

continuous. [6] In supervised learning, the network is 

trained on a training set consisting of vector pairs. One 

vector is applied to the input of the network; the other is 

used as a “target” representing the desired output. 

Training is accomplished by adjusting the network 

weights so as to minimize the difference between the 

desired and actual network outputs.  The GRNN uses a 

radial basis function (RBF) to map data vector inputs to 

the best matching outputs. [7]  GRNNs are comprised 

of two layers of artificial neurons.  The first layer, the 

“Radial Basis Layer”, consists of neurons which 

process data vectors in three consecutive steps.  The 

initial weights are calculated by simply transposing the 

data vectors from the training set.  Next, a Euclidean 

distance is calculated between an input vector and these 

weights.  Finally, the values are rescaled by the selected 

input spreading factor. The second “Linear Transfer 

Layer” consists of neurons with a linear transfer 

function.  Each data vector is solved to minimize the 

sum-squared error between the output of the first layer 

and the desired output. 

One advantage of the GRNN approach is simplicity.  In 

addition to having an extremely fast learning rate, being 

very accurate, and relatively insensitive to outliers, a 

GRNN has only one tunable parameter, the spreading 

factor h. As h increases, the radial basis function 

decreases in width.  The network will respond with the 

target vector being associated with the nearest 

designated input vector.  As the spreading factor 

becomes smaller, the radial basis function increases in 

width.  Several neurons may then respond to an input 

vector, and thus as the radial basis function gets wider 

and wider, more neurons contribute to the average, 

resulting in a smoother model function.   

Given a training set and an independent test set, a 

GRNN is trained by choosing the spreading factor  to 

obtain the best precision in the estimations. The GRNN 

structure is illustrated in Figure 1. 

 

Figure 1  Layout of GRNN used in this study.  P1-P4 

represent the input parameters from Table 1.  R1-R5 represnt 

the radial bais layer.  L1-L2 represent the Linear Transfer 

Layer.  The Cloud Optical Depth is the final output of the 

GRNN 

2.1 Initialization and Training of the GRNN 

A random set of 6000 input vectors was selected from 

the 16,517 data pool to perform the initial training and 



 

calibration.   During the calibration process, the input 

training set is fed to the GRNN for multiple iterations, 

altering the spreading function value before each run. 

After each execution the Mean Squared Error (MSE) 

between the estimated optical depth and the CALIPSO 

derived optical depths is calculated.   The spreading 

function producing the smallest MSE is chosen for the 

remaining training and testing of the data set. Table 2 

documents the MSE values for each run.  A spreading 

function of 1 was found to be the best match for this 

data set. 

Table 2:  Spreading Function Mean Squared Error 

Spreading Function .5 1 1.2 

MSE 0.0515 0.0026 0.0029 

 

Once the spreading function is selected, the GRNN 

requires a single iteration to produce the trained net.  A 

quick comparison between the derived optical depths 

and those generated by the GRNN is performed.   

Figure  illustrates a snap shot of the first 100 samples of 

the trained net.  

 

Figure 2. Comparison of CALIPSO derived optical depths 

(blue) to GRNN estimated optical depths  (red dashed, green 

box), for the first 100-samples. 

Complete analysis of the 6000-vector training set is 

required to verify a valid training set before continuing 

the testing phase. 

2.2 Testing and Evaluation of the GRNN 

Analysis of the GRNN performance is accomplished 

using established statistical methods for Neural Net 

evaluation [5]: The Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE) and the Correlation 

Coefficient are calculated after each execution.  

Evaluation of the net output for the randomly selected 

6000 vectors training set indicates a successful 

duplication of the optical depth values during our 

training cycle.    The log-log plot in Figure 3 shows a 

strong correlation (R = .9593) between the two data sets 

for optical depths to approximately ~0.1.  

Table 3 documents the complete statistical evaluation 

from the training cycle.   

 

Figure 3 A log-log plot of the training results for GRNN 

estimated optical depths to the CALIPSO derived optical 

depths 

The next phase of testing consists of applying the 

trained net to two sets of test data.  The first is a random 

set of 6000 vectors selected from the remaining 10,517-

vector data pool, and to the second is all vectors 

available in the test data set. First we perform what is 

considered a traditional test case.  This is where the 

quantity of training set vectors is equal to or greater 

than the number of test data vectors.  In this scenario all 

possible data characteristics should be well represented 

by the training data set.  The second test case uses a 

training data set that contains a much smaller quantity 

of data vectors than will subsequently be used in the 

test data set.  This procedure simulates training a 

GRNN with the available CALIPSO data and then 

applying it to the vast quantity of historical passive 

sensor measurements from multiple platforms. 

One iteration of the network will map the input of the 

test data set to the best matching estimated optical 

depth created during the training phase. Figure 4 shows 

a second log-log comparison with a strong correlation 

(R= .950) for the final testing cycle. Statistical 

evaluations for the testing cycles are documented in 

Table 3. 

 

 

Figure 4 Log-log plot of testing results for the GRNN 

estimated optical depths compared to the CALIPSO derived 

optical depths 6000 vector training set x 10000 vector test set.  



 

Table 3  Statistical Evalusation of  GRNN Training and 

Testing Cycles 

Net Cycle 

data set size 

Spreading 

Function 

MAE RMSE Correlation 

Coefficient 

Training 

6000 

1 0.0326 0.0513 .9593 

Testing 6000  1 0.0352 0.0564 .951 

Testing 

10000  

1 0.0354 0.0566 .950 

3. SUMMARY 

During our preliminary studies (April 2007) we tested a 

methodology for constructing a supervised neural 

network to derive cirrus cloud optical depths both from 

the on-going A-Train data stream and from the 

historical database of passive sensor measurements.  

The preliminary results indicated that the GRNN could 

be trained to estimate the optical depths of thin cirrus 

clouds embedded in the passive sensor measurements 

when these measurements were mapped to the 

collocated CALIPSO lidar optical depths.  When we 

subsequently apply the trained network to a test set of 

passive sensor parameters alone, we extract cirrus cloud 

optical depths as small as ~0.1 with a success rate of 

95%.   To further validate this methodology, we 

expanded the quantity of data being used for the 

training and test data sets, initialized the GRNN, and re-

executed.  December 2007 was selected, data vectors 

were prepared, testing and training was repeated.  The 

new training cycle produced estimated optical depth 

values that had a high correlation (R= ~.96) with the 

actual CALIPSO optical depths and a small RMSE of 

0.0513.   The trained net was applied to the two 

expanded test data sets.  Again the network produced 

estimated optical depth values with a high correlation 

with the actual values.  In both cases we had minimum 

of ~.95 correlation with a RMSE no greater than 0.056.   

In our judgment, the success rate for this methodology 

is very good.  Given an appropriate amount of training 

data, this approach appears promising for extending the 

knowledge gained from the CALIPSO nadir 

measurements to the full swath of collocated passive 

sensor measurements of SST and brightness 

temperature.  It is conceivable that a sufficiently well-

trained GRNN could eventually provide estimates of 

thin cirrus optical depths using the full historical 

database of pre-CALIPSO measurements.  However, 

when training neural networks it is critically important 

that each element of the training set is sufficiently 

represented over the data range for that element. In our 

specific case, this means we must sample enough 

combined “cirrus cloud scenes” to correctly estimate 

the optical depth for each scene type.  For further 

investigations it will be very beneficial to have multiple 

months, and eventually years, of collocated data to 

serve as the training set.  This will allow us to meet our 

objective of enhancing and extracting additional 

information form other passive data products such as 

MODIS  

GRNNs are exceptionally easy to train, producing 

accurate and reliable results with the minimum number 

of inputs.  The only draw back to the GRNN 

architecture can be system memory requirements for 

large data sets.  Field-programmable gate array (FPGA) 

hardware provides a reliable alternative to this problem 

[8]. 
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